Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter G. Jones, ${ }^{\mathbf{a} *}{ }^{*}$ Henning Hopf ${ }^{\text {b }}$ and Thorsten Hartig ${ }^{\text {b }}$
${ }^{\mathrm{a}}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail:
jones@xray36.anchem.nat.tu-bs.de

Key indicators

Single-crystal X-ray study
$T=178 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.103$
Data-to-parameter ratio $=14.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

($\boldsymbol{\eta}^{5}$-Pentamethylcyclopentadienyl)($\boldsymbol{\eta}^{5}$-5,6,7-trihydro-4,8-dimethyl-s-indacenyl)iron(II)

In the title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)\left(\mathrm{C}_{14} \mathrm{H}_{15}\right)\right.$, the coordinating rings make an angle of $3.4(2)^{\circ}$ with each other and are rotated away from the ideal eclipsed conformation by $\mathrm{ca} 13^{\circ}$.

Comment

In our continuing studies of the preparation and uses of novel multiple-metal metallocenes containing the [2.2]paracyclophane system as the bridging unit, such as the tris-iron complex (1) (Hopf \& Dannheim, 1988; cf. Hopf et al., 1986), we needed the title complex, (2), incorporating an s-indacene unit as a 'half cyclophane', as a reference compound. The isostructural ruthenium analogue is presented in the following paper (Jones et al., 2002).

(1)

(2)

The molecule of the title compound is shown in Fig. 1. The distances from the Fe atom to the centroids, $C g$, of the coordinating ring planes, which are essentially parallel [interplanar angle $\left.3.4(2)^{\circ}\right]$, are $1.674 \AA$ to the $\mathrm{C} 1-\mathrm{C} 8 A$ ring and $1.643 \AA$ to the C11-C15 ring, with an angle at Fe of 179.5°. The coordination of the indacenyl ring shows a very slight distortion towards η^{3}, with $\mathrm{Fe}-\mathrm{C} 3 A$ and $\mathrm{Fe}-\mathrm{C} 8 A$ being the longest distances. The rings are rotated appreciably away from the ideal eclipsed conformation, with torsion angles such as $\mathrm{C} 12-$ $C g 1-C g 2-\mathrm{C} 3=-13^{\circ}$.

Experimental

The title compound was prepared in 80% yield by first metallating 1,5,6,7-tetrahydro-4,8-dimethyl-s-indacene with methyllithium in anhydrous tetrahydrofuran, and then quenching the anions thus formed with equivalent amounts of the complex $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right] \mathrm{PF}_{6}$. It was characterized by spectroscopic and analytical data (Hartig,
1991), and by the crystal structure described here. Single crystals were obtained by slow cooling of a warm saturated solution in hexane.

Crystal data

[$\mathrm{Fe}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)\left(\mathrm{C}_{14} \mathrm{H}_{15}\right)$]

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.307 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation }
\end{aligned}
$$

$M_{r}=374.33$
Triclinic, $P \overline{1}$
$a=8.6838$ (15) £
$b=9.713$ (2) A
$c=11.566$ (3) A
$\alpha=80.62(2)^{\circ}$
$\beta=81.09$ (2) ${ }^{\circ}$
$\gamma=88.82(2)^{\circ}$
$V=950.9$ (4) \AA^{3}
Cell parameters from 50 reflections
$\theta=10-11.5^{\circ}$
$\mu=0.80 \mathrm{~mm}^{-1}$
$T=178$ (2) K
Tablet, red
$0.40 \times 0.40 \times 0.15 \mathrm{~mm}$

Data collection

Nicolet $R 3$ diffractometer ω scans
Absorption correction: none
3561 measured reflections
3346 independent reflections 2889 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.017$

$$
\begin{aligned}
& \theta_{\text {max }}=25.0^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=0 \rightarrow 11 \\
& l=-13 \rightarrow 13
\end{aligned}
$$

3 standard reflections every 147 reflections intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.103$
$S=1.08$
3346 reflections
233 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0604 P)^{2}\right. \\
& +0.467 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.004 \\
& \Delta \rho_{\max }=0.60 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.63 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters (\AA).

$\mathrm{Fe}-\mathrm{C} 12$	$2.036(2)$	$\mathrm{Fe}-\mathrm{C} 14$	$2.051(2)$
$\mathrm{Fe}-\mathrm{C} 13$	$2.037(2)$	$\mathrm{Fe}-\mathrm{C} 15$	$2.053(2)$
$\mathrm{Fe}-\mathrm{C} 3$	$2.045(2)$	$\mathrm{Fe}-\mathrm{C} 1$	$2.054(2)$
$\mathrm{Fe}-\mathrm{C} 2$	$2.049(2)$	$\mathrm{Fe}-\mathrm{C} 3 A$	$2.096(2)$
$\mathrm{Fe}-\mathrm{C} 11$	$2.049(2)$	$\mathrm{Fe}-\mathrm{C} 8 A$	$2.102(2)$

The starting coordinates for refinement were taken from the isostructural Ru analogue (following paper; Jones et al., 2002). Methyl H atoms were identified in difference syntheses, idealized and then refined, using rigid methyl groups allowed to rotate but not tip. Other H atoms were included, using a riding model, with fixed $\mathrm{C}-\mathrm{H}$ bond lengths (aromatic 0.95 , methyl 0.98 and methylene $0.99 \AA$); $U_{\text {iso }}(\mathrm{H})$ values were fixed at $1.2 U_{\text {eq }}$ of the parent atom. The methyl group at C20 converged slowly.

Data collection: P3 (Nicolet, 1987); cell refinement: P3; data reduction: XDISK (Nicolet, 1987); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figure 1
The molecule of compound (2) in the crystal. Ellipsoids represent 50% probability levels. H-atom radii are arbitrary.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. The authors thank Mr A. Weinkauf for technical assistance.

References

Hartig, T. (1991). PhD dissertation, Technical University of Braunschweig, Germany.
Hopf, H. \& Dannheim, J. (1988). Angew. Chem. Int. Ed. Engl. 27, 701-702.
Hopf, H., Raulfs, F.-W. \& Schomburg, D. (1986). Tetrahedron, 42, 1655-1663.
Jones, P. G., Hopf, H. \& Hartig, T. (2002). Acta Cryst. E58, m414-m415.
Nicolet (1987). P3 and XDISK. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.

